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Abstract

Presented is an 8-issue tree-VLIW processor design
for efficient support of dynamic binary translation. Thi
processor confronts two primary problems faced by VLI
architectures: binary compatibility and branch perfor-
mance. Binary compatibility with existing architectures i
achieved through dynamic binary translation which trans
lates and schedules PowerPC instructions to take adva
tage of the available instruction level parallelism. Efficien
branch performance is achieved through tree instruction
that support multi-way path and branch selection within
single VLIW instruction. The processor architecture i
described, along with design details of the branch un
pipeline, register file and memory hierarchy, for a 0.2
micron standard-cell design. Performance simulation
show that the simplicity of a VLIW architecture allows
wide-issue processor to operate at high frequencies.

1.0 Introduction

As the demand for increased performance in micropr
cessors continues, new architectures are required to m
this demand. Implementations of existing architectures a
quickly reaching their limits as increases in current supe
scalar out-of-order issue are bounded by circuit comple
ity [1], and performance increases due to technolog
improvements are approaching their limits.

A possible solution to these problems is the use of ve
long instruction word (VLIW) architectures, which do no
have to deal with the complexity of having to re-arrang
the instruction stream at execution time because they
statically scheduled to avoid dependency problems. Ma
previous VLIW architectures have suffered from problem
that have limited their success in the general purpose co
puting market. These problems have included: poor pe
formance on branch intensive code, and lack of bina
compatibility.

Previous studies have been performed on both bran
intensive code and binary compatibility. Combining multi
ple control paths into a single predicated control path, su
as with hyperblocks [2], or treegions [3], has shown exce
-

et

e

-

h

lent performance improvement for branch intensive cod
Binary compatibility studies have been successful in cre
ing hardware and software methods for supporting com
patibility both between different generations of VLIW
processors [4][5][6][7], as well as between VLIW archi
tectures and existing architectures [8][9]. This work pre
sents the first full processor design that effectively dea
with both problems.

In this paper, we present the DAISY (Dynamically
Architected Instruction Set from Yorktown) processor, a
eight-issue VLIW processor using tree-based VLIW
instructions [10] (also referred to asVLIWs) and just-in-
time compilation techniques. The processor was design
at IBM T.J. Watson Research Center using standard c
ASIC technology and currently simulates at 350 MHz.

This paper is structured as follows: Section 2 show
how dynamic translation can be used to achieve bina
compatibility with legacy instruction sets across a range
VLIW architectures. Section 3 describes DAISY, the targ
VLIW architecture based on tree VLIWs, and how i
achieves high performance on control flow intensive pr
grams. Section 4 outlines the processor core, including
branch unit, pipeline and register file. Section 5 describ
details of the memory hierarchy. Section 6 discusses t
layout and floorplan of DAISY, and Section 7 reports sim
ulation results. Conclusions are presented in Section 8.

2.0 Dynamic Translation

While the performance advantages of VLIW architec
tures have always been acknowledged, binary compatib
ity between members of a VLIW family and also betwee
VLIW architectures and existing architectures have been
major problem for the success of VLIW processors in th
market place. To counter this problem, dynamic bina
translation [8] is used to achieve 100% architectural com
patibility between the DAISY VLIW architecture and the
PowerPC architecture. Dynamic translation can also
used to provide compatibility with the Java Virtua
Machine [11] and the IBM System/390 architecture.
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Figure 1  - Dynamic translation of object code is
performed as each code fragment is accessed for the
first time. All future executions of this code are then

executed in fast, native VLIW code.

In the DAISY architecture, a system component called
the virtual machine monitor (VMM) translates each frag-
ment of code from the base architecture to the VLIW target
architecture, as shown in Figure 1. The VMM works as fol-
lows: as each new fragment of code (such as a page) is exe-
cuted for the first time, the code is translated to simple
RISC-like primitives, scheduled in parallel to take full
advantage of the available instruction level parallelism of
VLIW architectures, and saved in a portion of main mem-
ory not visible to the old architecture. Subsequent execu-
tions of the same fragment do not require translation unless
the fragment has been purged to reclaim space. DAISY
includes new fast compiler algorithms for accomplishing
the dynamic translation and parallelization across multiple
paths and loop iteration boundaries [9].

Figure 2  - The DAISY system architecture connects
to a standard PowerPC system through the 60X
interface. Shaded parts indicate the flash ROM

storing the DAISY virtual machine monitor and the
memory store for translated code.

The DAISY emulation concept is different from other
dynamic binary compilation strategies, where process-
based emulation is supplied. In previous emulation strate-
gies [12], emulation was a part of the operating system’s
services. In the DAISY approach, the VMM is part of the
firmware, and emulates the entire instruction set, including
system level operations. As a result, the DAISY architec-
ture is indistinguishable from a hardware implementation
and can boot standard native operating system code. Figure

2 shows a system level view of a PowerPC system based
the DAISY architecture.

3.0 The DAISY VLIW Architecture

The DAISY architecture defines a VLIW architectur
designed for efficient binary translation of PowerPC cod
Efficient binary translation is achieved through two mech
nisms. The first is the tree structure of VLIW instruction
which provides multi-way path and branch capability i
every cycle. The second is the design of the instruction
which provides 100% compatibility with the base archite
ture through a set of simple RISC-like operations as well
the means to increase ILP through speculative executi
out-of-order loads, and other optimizations.

The basic DAISY architecture is a load-store archite
ture with a 32-bit integer datapath and fixed-length 256-b
VLIW instructions. It provides 64 32-bit registers and 16 4
bit condition registers. Each VLIW instruction contains
parallel three-operand operations and a control header c
taining information for control flow and predication. Futur
architecture revisions will include floating point.

3.1 Tree Structure

To achieve good performance on branch intensive co
each VLIW instruction implements a multi-way path selec
tion scheme. Path selection proceeds by reading from
condition register file up to three conditions, which wer
the results of compares or condition operations in previo
VLIWs. Testing these conditions, the multi-way pat
scheme can define up to four paths and branch targets
VLIW. The operations in each VLIW are predicated upo
one or more paths of control flow so that only those oper
tions along the selected path, known as thetaken path, exe-
cute. Figure 3 gives an example of a tree-shaped VLI
instruction as implemented in DAISY.

Figure 3  - A tree VLIW instruction implements multi-
way selection of the tree-shaped paths of control flow.

Operations within a VLIW are predicated upon the
taken path, defined by the state of condition codes

ccA, ccB, and ccC.

The tree form, condition tests, branch targets and exe
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tion predicates for each VLIW are encoded in a 72-bit
VLIW header, followed by 8 23-bit parcels, each encoding
a three-operand operation. The VLIW header format allows
any path through the VLIW instruction to specify what sub-
set of the eight operations to execute if a particular path is
chosen. These operations are defined by the DAISY
instruction set.

3.2 Instruction Set

The DAISY instruction set supports normal integer oper-
ations including addition and subtraction, memory opera-
tions, compares, shifts, logic operations, and condition
operations. In addition to these basic operations, there are a
few compatibility operations for supporting efficient binary
translation and emulation of PowerPC semantics, such as
several commit operations for supporting speculative exe-
cution, load-verify operations for supporting out-of-order
loads, and extender operations for providing additional
operation functionality. Most operations can be executed in
any issue slot, except for memory and extender operations,
which may only be scheduled in four issue slots.

For efficient binary translation support, the DAISY
architecture contains a “load VLIW instruction address
(LVIA)” operation. The LVIA operation loads the VLIW
instructions corresponding to a section of PowerPC code. If
the code is already translated and in memory, the LVIA
operation returns the address of the appropriate VLIW
starting instruction, otherwise it loads the VMM translator,
which translates the PowerPC code before executing the
corresponding VLIW instructions.

The architecture provides speculative execution with
precise exceptions using the support of a commit operation
and register extender bits. Each register contains three
extender bits: carry, overflow, and exception. While emulat-
ing PowerPC code, some of the registers in the DAISY pro-
cessor correspond to the architected registers in a PowerPC
(specifically, DAISY registers r0 through r31). When an
operation is executed speculatively, it does not commit its
results to the registers maintaining the emulated PowerPC
state, but instead to the remaining DAISY registers. At the
point in the emulated program when the PowerPC instruc-
tion is supposed to execute, a commit operation is used to
copy the register contents to the emulated PowerPC desti-
nation register and change the state of the processor as
specified by the extender bits.

Aggressive reordering of memory references without
memory disambiguation is also supported in the architec-
ture. A load may be scheduled early and stored in a specu-
lative register for use by other speculative operations before
it is actually known if the value is correct. At the time in
which the load was supposed to occur, a load-verify opera-
tion is scheduled. This load-verify performs the same load,
then checks the result against the speculatively loaded
value. If the values differ, an exception occurs.

Limited opcode space necessitated extender operati
for some of the more specialized, less frequent operatio
Using a pairwise organization of the ALUs (see floorplan
section 6), one ALU in a pair may use an extender ope
tion to increase the functionality of an operation in th
other ALU. This allows for longer immediate constants a
well as addition and subtraction with carry.

Special attention was given to memory operations f
minimizing execution time. To enable single-cycle exec
tion, memory operations were split into separate addre
generation and memory access operations. The add
generation operation performs an address addition a
saves the result in one of four dedicated memory addr
registers (MARs). In the next cycle, the load or store occur
using the address directly from one of the MARs. Like th
extender operations, these two operations occur in pai
ALUs. One ALU in the pair generates the address that
consumed by the other ALU for the memory access in t
next cycle. This enables up to four memory accesses ev
cycle.

Address translation in the TLB is logically identical to
the PowerPC, implemented through a combination of ha
ware and software.

4.0 DAISY Hardware Design

A high performance hardware design has been dev
oped for the target architecture described above. T
design exhibits single-cycle execution of all operations,
aggressive high-speed memory hierarchy, full bypassin
and perfect multi-way branch performance, i.e., branchi
every cycle without branch prediction. The basic desig
shall be presented first, followed by a more detailed discu
sion of some of the hardware issues.

4.1 Processor Architecture

The basic processor architecture is an 8-issue VLI
engine, as seen in Figure 4. The register file is a unified 1
read/8-write port register file with 64 32-bit registers. Sim
larly, the condition register file has 16 4-bit condition regis
ters. It also has 8 write ports, but only requires 11 re
ports: one for each issue slot and three for the branch u
The branch unit decodes the tree VLIW header and det
mines the branch target and path of execution.

The DAISY design uses an aggressive cache hierarchy
satisfy the large bandwidth requirements typical of VLIW
architectures. There are separate L1 instruction and d
caches, each providing single-cycle access. The L1 d
cache is direct-mapped with 32 KB, while the L1 instruc
tion cache is direct-mapped with 64 KB. Instructions an
data are combined in the L2 cache, which is a direc
mapped 256 KB cache with a hit time of 4 cycles. Tw
interfaces provide access to a 16 MB off-chip L3 cache, a
the 60X bus.
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Figure 4  - Basic processor design

4.2 Branching

Providing efficient branch behavior was of primary
importance in a hardware design of the DAISY architec-
ture. Each VLIW instruction explicitly indicates all branch
targets in its header, so the processor effectively branches
every cycle. This design achieves perfect branch perfor-
mance by splitting branch target selection into two phases.

The first step in branching is to fetch all possible branch
targets, enabling late selection of the desired branch target.
Since fetching all possible branch targets from random
locations in memory is too costly, the architecture requires
the branch targets (up to 4) to be located consecutively in
memory. As a result, the first branch phase fetches from the
instruction cache a single block of memory containing all
four possible branch targets. The address of this block,
known as theNext Line Address, is contained in the previ-
ous VLIW, as shown in Figure 5.

The second phase in branch evaluation is choosing the
appropriate VLIW from among the block of four VLIWs.
While a given VLIW instruction,VLIW n, is executing, its
header is processed by the branch unit. The branch unit
fetches up to three test conditions from the condition regis-
ter file and evaluates the tree to determine the branch target
and taken path. The branch target information selects the
next VLIW for execution,VLIW n+1, from the block of
four VLIWs. At the same time, the taken path information
for VLIW n is fed to the execution unit which completes
only those operations predicated upon the taken path.

This two phase branching scheme provides perfect
branch performance assuming the two branch phases occur
in the first two stages of the pipeline. The first phase of
branching, block VLIW fetch, must complete within the
first stage to obtain the address for the next instruction fetch
by the end of the cycle. The second phase of branching, tree
VLIW header evaluation, must complete in the second
stage to select the appropriate branch target from the block

of four VLIWs. The ability to branch every cycle without
any misprediction penalty provides exceptional perfo
mance on control intensive code.

4.3 Pipeline

Like the rest of the design, the pipeline of the DAISY
processor was chosen for scheduling efficiency and achi
ing high ILP. It uses a three-stage pipeline for reducin
scheduling constraints and branch penalties, while depe
ing upon the simpler hardware design of VLIW architec
tures to achieving high frequencies. The three pipeli
stages of the DAISY processor areInstruction Fetch, Exe-
cute, andWrite Back, as shown in Figure 5. The stages hav
been carefully designed so that each has approximately
same delay.

The instruction fetch (IF) stage begins by fetching the
block of four target VLIW instructions from the specified
address. A 4:1 multiplexer selects one of these VLIWs. T
address,Next Line Address, in its header specifies the
instruction fetch address for the next cycle. The VLIW
then latched at the end of the IF stage.

Figure 5  - Pipeline Stages

The execute (EX) stage combines four major functions
branch evaluation, register fetch, bypassing, and executi
The stage begins with operand fetch, which fetches the r
ister and condition register values, performs full bypassi
of the 8 results from the previous VLIW, and selec
between immediate and register sources. The operands
then sent to the branch and execute units. The branch
evaluates the VLIW tree header and determines the bra
target and taken path. Branch target selection indica
which of the four VLIWs in the IF cache line is selected fo
execution in the next cycle. Simultaneously, the execu
stage receives the operands and executes all 8 operati
latching the results at the end of the EX stage. During t
write back (WB) stage, the results of those operations pre
icated upon the taken path are committed and written ba
to the register files.

Pipeline control is simple in the case of normal executio
where the pipeline simply advances one stage each cy
but requires special handling in the event of stalls or exce
tions. During stalls and exceptions, the state of the pipeli
must remained fixed until the stall or exception is handle
At high frequencies, because of the large wire del

ALU
   0

Register File - 64 GPRs, 16 CRs

ALU
   1

ALU
   2

ALU
   3

ALU
   4

ALU
   5

ALU
   6

ALU
   7

L1 Instruction Cache - 64 KB

Branch Unit

 60X Interface

L3 Memory
 Interface

60X Bus
 Interface

   L3 Interface

 32 KB
L1 Data Cache

 256 KB
 L2 Cache

IF EX WB

VLIW0

VLIW1

VLIW2

VLIW3I-C
ac

he
 L

in
e

Next
Line
Addr

 Branch
 Unit

 Operand
Fetch

 Execute



ti-
ur
d
n-

. A
is-
he

y
e

-
h
a

ld

-

h
on.
to

tion
y
t

he
s.
e
ts
between units, it is not feasible to stop advancement of the
pipeline in the same cycle the stall or exception event
occurs. Instead, the processor core uses backup register to
provide correct stall and exception handling. At the end of
each normal cycle, the last pipeline state is stored into
backup registers. When a stall or exception occurs, the cur-
rent cycle completes, simultaneously writing an invalid
state into the registers and the last valid state into the
backup registers. On the next cycle the last valid state is
restored from the backup registers. In subsequent stall or
exception cycles, this state remains fixed. When the stall or
exception completes and normal execution resumes, pipe-
line execution continues from the last valid state.

4.4 Register File

The execute stage, which combines the register fetch and
execute functions, is one of the critical paths in the DAISY
processor. Since both of these functions are performed in a
single cycle, register file read times are critical to cycle
time. To minimize register read time, rather than a single
register file with 16 read ports and 8 write ports, 8 identical
copies of the register file with 2 read ports and 8 write ports
per copy are used. Each execution unit fetches its operands
from its own local copy of the register file, but writes its
results to all 8 copies. This design trade-off minimizes the
critical register read time of the execute stage at the expense
of extra loading during register write back. However, write
back time is not as critical because the whole WB cycle is
dedicated to write back.

Although combining the register fetch and execute func-
tions into a single pipeline stage can be one of the limiting
factors in achieving the fastest cycle time, this path is also
balanced with other critical paths throughout the chip.
Other such paths include the SRAM access and logic and
wire delay for the first level instruction and data caches.
Also, the combined execute stage allows the register fetch
to occur in parallel with bypassing, effectively hiding the
bypass delay. Full bypassing between all 8 issue slots is
possible with only minimal impact on cycle time.

5.0 Memory Hierarchy

Architectures employing high instruction level parallel-
ism place a heavy burden on the memory hierarchy.
Achieving maximum performance requires large fast multi-
ported, single-cycle instruction and data caches. Figure 6
shows the top level memory hierarchy. The processor core
is divided into four clusters of ALU pairs, each containing a
load/store unit, a first level data cache port, a first level
instruction cache port and a translation lookaside buffer
(TLB) port.

The first level instruction cache (I1 cache) is 64 KB, par-
titioned into four sections, each containing two operations
for the attached cluster, along with duplicated control bits.

The first level data cache (D1 cache) is 32 KB. Two iden
cal copies service the nearby ALU clusters. There are fo
identical copies of a 1K entry TLB, each with a single rea
and write port. The instruction and data caches are co
nected to an integrated 256 KB level 2 cache (L2 cache)
third level 16 MB cache (L3 cache), constructed using d
crete off-chip SRAM devices, is attached to the L2 cac
along with an integrated 60X interface.

Figure 6  - Top level memory hierarchy

5.1 I1 Cache

For the DAISY processor to achieve perfect multi-wa
branching on every cycle, single-cycle execution of th
instruction fetch (IF) stage is critical. Wire delay is mini
mized by partitioning the I1 cache into four sections, whic
are each locally self-contained. Each partition services
single cluster of two ALUs, so the partition needs to ho
only those portions of the VLIW instruction pertinent to
that ALU pair. This includes two operations and informa
tion on the shape of the VLIW tree.

Fast cycle time is achieved during the instruction fetc
stage by replicating the branch unit at each cache partiti
The VLIW tree header contained in each partition is used
perform address generation and branch target selec
locally for each cluster. Implementing branching locall
minimizes the wire delay for communicating the nex
instruction address to each cache partition.

Figure 7 shows the details of an I1 cache partition. T
I1 cache is direct mapped with 512 rows and four bank
Each line contains 4 VLIW instructions (1024 bits), on
VLIW per bank, such that all four possible branch targe
of the previous VLIW instruction reside in the same row
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address (see section 4.2). The fetch address, Next Line
Address, is applied to each bank in each partition, reading
from the SRAM single-ported array bank one of the four
VLIW instructions. Simultaneously, the I1 cache write
buffers are examined for an address match. If a write buffer
hit occurs, multiplexers select the write buffer outputs over
the SRAM data. The data are then applied to a 4:1 multi-
plexer where a select signal from the branch unit selects the
proper VLIW. On each access, the tag from the I1 directory
is checked by a comparator and if a miss occurs, a stall sig-
nal is raised and an L2 request is made. When valid data
comes from the L2, it is directly bypassed to the ALU clus-
ters through multiplexers and simultaneously loaded into
the write buffers, while the old contents of the write buffers
are written into the SRAM array.

Figure 7  - I1 cache section

5.2 D1 Cache and TLB

Careful attention was given to the design of the D1 cache
to support up to four memory operations per cycle. To
effectively support such bandwidth, instead of a single D1
cache with 4 read ports and 4 write ports, two identical cop-
ies with 2 read ports and 4 write ports are used. As shown
in Figure 6, each copy services a pair of ALU clusters.
Using two copies decreases the wire delay and number of
read ports, allowing for single-cycle loads, after address
computation has been performed in a previous cycle. Each
copy still requires four store ports to maintain a consistent
view of the memory. However, store time is not as critical
since write buffers hide the delay.

The D1 cache is direct mapped and has 32 byte lin
The implementation for multiple ports uses single-porte
SRAM arrays organized into 8 banks. Data is interleav
on a 32 byte line basis, with lines 0,8,16,... in bank 0, lin
1,9,17,... in bank 1 and so on. All four requests can be sa
fied in a single cycle when there are no bank conflic
When multiple requests are made to the same bank,
VLIW stalls and the requests are prioritized by ALU num
ber in left-to-right order. Use of 8 banks allows for faste
array access times and reduces stalls from bank conflict

Each read/write port maintains a separate copy of the
cache directory. On an access, TLB and D1 directo
checks are performed. If the TLB directory does not mat
the upper bits of the effective address, a TLB miss exce
tion occurs. Otherwise, if the real address coming out of t
TLB matches the real address of the D1 directory, there i
D1 cache hit. A D1 cache miss is detected on the cycle af
the SRAM or write buffer access, and the D1 cache sta
until valid data arrives from the L2 cache.

The TLB is implemented as a direct mapped 1K ent
array, which supports the usual PowerPC condition a
protection modes, and additional information to suppo
binary translation.

Figure 8  - D1 cache dataflow for read operation

Each bank contains a 128x32 byte SRAM array, fo
2x32 bit write buffers for stores and a 288 bit castout buffe
Figure 8 shows a diagram of the read path of the D1 cac
On a read, one of four addresses is selected by control lo
for row selection and comparison with the addresses of p
vious stores in the write buffers. The 32 byte line read fro
the SRAM is multiplexed down to two 32 bit words, one fo
each port, while the data from the write buffers are sim
larly multiplexed to two 32 bit words according to the
address comparisons. The eight words for each port fr
the banks are then multiplexed by bank select multiplexe
The desired data are finally selected according to the va
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byte data. Writes into the bank as a result of a store are
done into the write buffers and marked valid after a TLB
and directory hit. The write buffers also contain rotate
logic, which performs byte rotations according to the store
command. Path lengths are less critical for data stores,
since the data is first written into the write buffer and is not
dependent on SRAM access time.

5.3 L2 Cache

The L2 cache is logically seen as a unified 256 KB
direct-mapped cache with 2 read ports and a single write
port. One read port is dedicated for 128 byte wide I1 cache
reads, while the other is for 32 byte wide D1 cache read and
write accesses. Simultaneous I1 cache and D1 cache
requests to the L2 cache are serialized. The L2 cache is
implemented as a single one port, 2K row, 128 byte line
SRAM array. Address selection logic arbitrates between
access requests from the I1 and D1 interfaces. Data is read
into two, 2:1 multiplexers, one of which allows the L3 data
to be bypassed to the lower memory hierarchical levels,
while the other is for castouts to the L3 cache. The 128 byte
output of the first 2:1 multiplexer is then either used by the
I1 cache or further multiplexed down to a 32 byte subline
by the subline select logic for the D1 cache.

5.4 L3 Cache and 60X Interface

The L3 cache controller accepts a 128 byte request from
the L2 cache and serializes the data into 32 byte wide bursts
sent to four 32 byte wide off-chip SRAM banks. L3 misses
and castout requests are sent to a simplified 60X interface
unit, where a request is made for a 60X bus burst transac-
tion of four 8 byte accesses to main memory. This design
does not support cache snooping for multiprocessing, as
only a uni-processor implementation is currently being con-
sidered. Multiprocessing support will be added in future
implementations.

6.0 Chip Floorplan

Special attention was given to the layout of the processor
for achieving maximum speed. Figure 9 shows a simplified
diagram of the top level chip floorplan. The figure shows
the placement of the multiple copies of the register files
with relation to adjacent ALUs, the two D1 cache copies,
and the four I1 cache partitions. Multiple branch unit copies
are also shown adjacent to each I1 cache partition. Careful
attention was paid to unit placement and duplication of
units for minimizing wire delay between units. Design
decisions to duplicate units were also balanced with limits
for total chip area and logical cache sizes.

7.0 Results

The processor is implemented in VHDL for ASIC syn-

Figure 9  - DAISY Processor Floorplan

thesis into IBM’s 0.25µm SA-12 CMOS technology, with
effective gate length of 0.18µm, 2.5V supply voltage and 5
wiring levels. The SRAM arrays are created with an arra
compiler, and the ALU and register file are created usi
bit-stacked standard-cell datapath circuits. Preliminary sy
thesis results show that the chip contains 486K comp
logic gates and 478 KBytes of SRAM memory, within a

area of 300 mm2. Initial critical path simulations of synthe-
sized macros result in an estimated cycle time of 350MH
for nominal performance parts. VHDL simulations of th
processor were performed with the aid of an assembler p
gram, created to allow significant programs to be written
assembly and then translated to a binary memory image
driving the VHDL simulation. Architecture verification tes
programs were coded at the assembly level and executed
the VHDL model.

System performance modeling was done using trac
based and execution-based simulators with the DAIS
binary translator for the PowerPC architecture to explo
various architectural trade-offs. The performance evalu
tions were done with these simulators using industry sta
dard benchmarks. Results for page-based dynam
translation have been previously reported in [9]. Mo
aggressive trace-based optimizations show promis
results with higher levels of instruction level parallelism.

Table 1 summarizes the performance estimates for tra
based binary translation on the machine described in t
paper using SPECint95. The cycles per PowerPC instr
tion for each benchmark is broken down into componen
of: infinite cache performance, I-cache miss penalty, D
cache miss penalty, TLB miss penalty, and translation ov
head. The cache hierarchy is flushed when a new fragm
of code is translated, to reflect the adverse effect of trans
tion events on the memory hierarchy. The actual translat
overhead is low because the SPECint95 benchmarks h
high code re-use rates. The degradation due to cache mi
is quite significant in the present design, which follows
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simple stall-on-miss policy. But the cache penalty is likely
to be reduced in future versions of the design, when more
on-chip cache is available, and latency hiding techniques
are used. Table 2 summarizes the simulation parameters.

8.0 Conclusion

Described was an 8-issue, tree VLIW processor which
uses dynamic translation for binary compatibility with
existing architectures. The architecture uses tree-based
VLIW instructions providing multi-way path and branch
selection for improved performance on branch intensive
code. Eight ALU operations may be scheduled per VLIW
with support provided for speculative execution. The archi-
tecture allows up to four load/store operations per VLIW to
satisfy the bandwidth requirements of high instruction level
parallelism architectures.

The hardware design uses a three-stage pipeline which
provides single-cycle execution of all operations and per-

fect multi-way branching every cycle. An aggressive mem
ory hierarchy is necessary to supply the four simultaneo
load/store operations per VLIW. Numerous redundant c
cuits decrease loading and wire delay for high frequen
operation. A VHDL ASIC design was simulated and syn
thesized. Preliminary results indicate exceptional proces
speeds are achievable even in ASIC technology, w
increased performance easily realizable in a custom imp
mentation.
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Bench-
mark

Inf
CPI

I
Cache

D
Cache

D
TLB

trans-
lation

Tot.
CPI

compress 0.31 0.10 0.56 0.02 0.00 0.99

gcc 0.42 0.67 0.09 0.00 0.02 1.20

go 0.52 0.64 0.24 0.00 0.00 1.40

ijpeg 0.32 0.05 0.07 0.02 0.00 0.46

li 0.33 0.12 0.05 0.00 0.00 0.50

m88ksim 0.32 0.16 0.10 0.00 0.00 0.58

perl 0.41 0.11 0.03 0.00 0.00 0.55

vortex 0.34 0.21 0.53 0.09 0.00 1.17
SPECint95
(geom mean)

0.37 - - - - 0.78

TPC-C 0.44 1.20 0.48 0.16 0.00 2.28

Table 1 ILP performance given as cycles / PowerPC
instruction - the translation cost is based on a 4000

cycle per translated PowerPC instruction cost.

cache size assoc. line size latency
(cycles)

TLB 1 K
entry

1 - 1 hit,
41miss

I1 64 KB 1 128 byte 1

D1 32 KB 1 32 byte 1

L2 256 KB 1 128 byte 4

L3 16 MB 1 128 byte 18

memory
(60X)

- - - 106

Table 2 Memory hierarchy used for performance
simulations - the cycle latency specified for data
accesses excludes address generation which is

performed separately
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