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Abstract

lent performance improvement for branch intensive code.
Binary compatibility studies have been successful in creat-

Presented is an 8-issue tree-VLIW processor designed jhg hardware and software methods for supporting com-

for efficient support of dynamic binary translation. This
processor confronts two primary problems faced by VLIW
architectures: binary compatibility and branch perfor-
mance. Binary compatibility with existing architectures is
achieved through dynamic binary translation which trans-
lates and schedules PowerPC instructions to take advan-
tage of the available instruction level parallelism. Efficient
branch performance is achieved through tree instructions
that support multi-way path and branch selection within a
single VLIW instruction. The processor architecture is
described, along with design details of the branch unit,
pipeline, register file and memory hierarchy, for a 0.25
micron standard-cell design. Performance simulations
show that the simplicity of a VLIW architecture allows a
wide-issue processor to operate at high frequencies.

1.0

As the demand for increased performance in micropro-

Introduction

patibility both between different generations of VLIW
processors [4][5][6][7], as well as between VLIW archi-
tectures and existing architectures [8][9]. This work pre-
sents the first full processor design that effectively deals
with both problems.

In this paper, we present the DAISY (Dynamically
Architected Instruction Set from Yorktown) processor, an
eight-issue VLIW processor using tree-based VLIW
instructions [10] (also referred to a4.IWs) and just-in-
time compilation techniques. The processor was designed
at IBM T.J. Watson Research Center using standard cell
ASIC technology and currently simulates at 350 MHz.

This paper is structured as follows: Section 2 shows
how dynamic translation can be used to achieve binary
compatibility with legacy instruction sets across a range of
VLIW architectures. Section 3 describes DAISY, the target
VLIW architecture based on tree VLIWS, and how it
achieves high performance on control flow intensive pro-

cessors continues, new architectures are required to meetdfams. Section 4 outlines the processor core, including the
this demand. Implementations of existing architectures are Pranch unit, pipeline and register file. Section 5 describes
quickly reaching their limits as increases in current super- details of the memory hierarchy. Section 6 discusses the
scalar out-of-order issue are bounded by circuit complex- layout and floorplan of DAISY, and Section 7 reports sim-
ity [1], and performance increases due to technology ulation results. Conclusions are presented in Section 8.
improvements are approaching their limits.

A possible solution to these problems is the use of very

long instruction_ word (VLIW) ar_chitecture_:s, which do not While the performance advantages of VLIW architec-
have to deal with the complexity of having to re-arrange tyres have always been acknowledged, binary compatibil-
the instruction stream at execution time because they are ity between members of a VLIW family and also between
statically scheduled to avoid dependency problems. Many v/ \w architectures and existing architectures have been a
previous VLIW architectures have suffered from problems major problem for the success of VLIW processors in the
thaf[ have limited their success in the ge_neral purpose com- market place. To counter this problem, dynamic binary
puting market. These problems have included: poor per- transiation [8] is used to achieve 100% architectural com-
formance on branch intensive code, and lack of binary patibility between the DAISY VLIW architecture and the
compatibility. PowerPC architecture. Dynamic translation can also be
Previous studies have been performed on both branch ;seq to provide compatibility with the Java Virtual
intensive code and binary compatibility. Combining multi-  pachine [11] and the IBM System/390 architecture.
ple control paths into a single predicated control path, such
as with hyperblocks [2], or treegions [3], has shown excel-

2.0 Dynamic Translation



2 shows a system level view of a PowerPC system based on
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Oy Tanstaton ﬁg‘ T_he DAISY a_\r(_:hitecfcure defines a VLIW architecture

designed for efficient binary translation of PowerPC code.

Figure 1 - Dynamic translation of object code is Efficient binary translation is achieved through two mecha-

performed as each code fragment is accessed for the nisms. The first is the tree structure of VLIW instructions

first time. All future executions of this code are then which provides multi-way path and branch capability in
executed in fast, native VLIW code. every cycle. The second is the design of the instruction set

which provides 100% compatibility with the base architec-

In the DAISY architecture, a system component called ture through a set of simple RISC-like operations as well as
the virtual machine monitorMMM) translates each frag- the means to increase ILP through speculative execution,
ment of code from the base architecture to the VLIW targetout-of-order loads, and other optimizations.
architecture, as shown in Figure 1. The VMM works as fol-  The basic DAISY architecture is a load-store architec-
lows: as each new fragment of code (such as a page) is exaure with a 32-bit integer datapath and fixed-length 256-bit
cuted for the first time, the code is translated to simple VLIW instructions. It provides 64 32-bit registers and 16 4-
RISC-like primitives, scheduled in parallel to take full bit condition registers. Each VLIW instruction contains 8
advantage of the available instruction level parallelism of parallel three-operand operations and a control header con-
VLIW architectures, and saved in a portion of main mem- taining information for control flow and predication. Future
ory not visible to the old architecture. Subsequent execu-architecture revisions will include floating point.
tions of the same fragment do not require translation unless
the fragment has been purged to reclaim space. DAISY3.1  Tree Structure
includes new fast compiler algorithms for accomplishing 14 achieve good performance on branch intensive code,
the dynamic translation and parallelization across multiple ggch VLIW instruction implements a multi-way path selec-
paths and loop iteration boundaries [9]. tion scheme. Path selection proceeds by reading from the
condition register file up to three conditions, which were
: : the results of_compares or cor_ujition operationg in previous
| oasy Lt s | VLIWSs. Testing these conditions, the multi-way path
| |
| |

Processor Cache scheme can define up to four paths and branch targets per
VLIW. The operations in each VLIW are predicated upon
T ‘i ““““ ! one or more paths of control flow so that only those opera-
60X to T e 7 tions along the selected path, known asttilen pathexe-
niriaca | Fasn ! O I cute. Figure 3 gives an example of a tree-shaped VLIW
I T . . . -
¢ RoM | Interfac instruction as implemented in DAISY.
EDO | Translate}l
pRAW | Code if (ccA == false)
execute ops on path P1
. . hto Ll
Figure 2 - The DAISY system architecture connects oorancho
to a standard PowerPC system through the 60X P1 if (ccB == true) .
interface. Shaded parts indicate the flash ROM procle ops on pat
storing the DAISY virtual machine monitor and the elsef( © = taise)
IT (ccC ==Talse
memory store for translated code. ccC execute ops on path P2
branch to L2
. . . |
The DAISY emulation concept is different from other P2 & axecute ops on path P3
dynamic binary compilation strategies, where process- L2 L3 branch to L3

based emulation is supplied. In previous emulation strate-

gies [12], emulation was a part of the operating system'sFigure 3 - A tree VLIW instruction implements multi-
services. In the DAISY approach, the VMM is part of the Way selection of the tree-shaped paths of control flow.
firmware, and emulates the entire instruction set, including Operations within a VLIW are predicated upon the
system level operations. As a result, the DAISY architec- taken path, defined by the state of condition codes
ture is indistinguishable from a hardware implementation CCA, ccB, and ccC.

and can boot standard native operating system code. Figure
The tree form, condition tests, branch targets and execu-



tion predicates for each VLIW are encoded in a 72-bit Limited opcode space necessitated extender operations
VLIW header, followed by 8 23-bit parcels, each encoding for some of the more specialized, less frequent operations.
a three-operand operation. The VLIW header format allowsUsing a pairwise organization of the ALUs (see floorplan in
any path through the VLIW instruction to specify what sub- section 6), one ALU in a pair may use an extender opera-
set of the eight operations to execute if a particular path istion to increase the functionality of an operation in the
chosen. These operations are defined by the DAISYother ALU. This allows for longer immediate constants as

instruction set. well as addition and subtraction with carry.
] Special attention was given to memory operations for
3.2 Instruction Set minimizing execution time. To enable single-cycle execu-

The DAISY instruction set supports normal integer oper- ion, memory operations were split into separate address
ations including addition and subtraction, memory opera-generation and memory access operations. The address
tions, compares, shifts, logic operations, and condition9eneration opera_ltion performs an address addition and
operations. In addition to these basic operations, there are §2ves the result in one of four dedicated memory address
few compatibility operations for supporting efficient binary "€gisters MARS). In the next cycle, the load or store occurs
translation and emulation of PowerPC semantics, such a§Sing the address directly from one of the MARs. Like the
several commit operations for supporting speculative exe-extender operations, these two operations occur in paired
cution, load-verify operations for supporting out-of-order ALUS. One ALU in the pair generates the address that is
loads, and extender operations for providing additional consumed by the other ALU for the memory access in the
operation functionality. Most operations can be executed innext cycle. This enables up to four memory accesses every
any issue slot, except for memory and extender operationsSycle-
which may only be scheduled in four issue slots. Address translation in the TLB is logically identical to

For efficient binary translation support, the DAISY the PowerPC, implemented through a combination of hard-
architecture contains a “load VLIW instruction address Ware and software.

(LVIA)" operation. The LVIA operation loads the VLIW .

instructions corresponding to a section of PowerPC code. If4'0 DAISY Hardware Design

the code is already translated and in memory, the LVIA A high performance hardware design has been devel-

operation returns the address of the appropriate VLIWopeq for the target architecture described above. This

starting instruction, otherwise it loads the VMM translator, gesign exhibits single-cycle execution of all operations, an

which translates the PowerPC code before executing thgggressive high-speed memory hierarchy, full bypassing,

corresponding VLIW instructions. and perfect multi-way branch performance, i.e., branching
The architecture provides speculative execution with gyery cycle without branch prediction. The basic design

precise exceptions using the support of a commit operationsha| be presented first, followed by a more detailed discus-
and register extender bits. Each register contains thregjgn of some of the hardware issues.

extender bits: carry, overflow, and exception. While emulat-

ing PowerPC code, some of the registers in the DAISY pro-4.1 Processor Architecture
cessor correspond to the architected registers in a PowerPC
(specifically, DAISY registers r0O through r31). When an
operation is executed speculatively, it does not commit its
results to the registers maintaining the emulated PowerP
state, but instead to the remaining DAISY registers. At the
pomF in the emulated program when Fhe Pow<_arP(_3 Instruc- orts: one for each issue slot and three for the branch unit.
tion is supposed to execute, a commit operation is used t

) .The branch unit decodes the tree VLIW header and deter-
copy the register contents to the emulated PowerPC desti- . .
mines the branch target and path of execution.

gaggirf]ierggt)ISttehrle:geﬁZZ?%isthe state of the processor as The DAISY design uses an aggressive cache hierarchy to
P y ' satisfy the large bandwidth requirements typical of VLIW

Aggressive reordering of memory references without : . :
: . .2 . .. __architectures. There are separate L1 instruction and data
memory disambiguation is also supported in the architec- . .
. caches, each providing single-cycle access. The L1 data
ture. A load may be scheduled early and stored in a specu-

. . . . cache is direct-mapped with 32 KB, while the L1 instruc-
lative register for use by other speculative operations before o . .
. . ) . ~~.7"tion cache is direct-mapped with 64 KB. Instructions and
it is actually known if the value is correct. At the time in

which the load was supposed to occur, a load-verify opera—data are combined in the L2 cache, which is a direct-

tion is scheduled. This load-verify performs the same Ioad,mapped 256 K.B cache with a hit time Of.4 cycles. Two
. . nterfaces provide access to a 16 MB off-chip L3 cache, and
then checks the result against the speculatively loade

value. If the values differ, an exception occurs. he 60X bus.

The basic processor architecture is an 8-issue VLIW
engine, as seen in Figure 4. The register file is a unified 16-
ead/8-write port register file with 64 32-bit registers. Simi-
arly, the condition register file has 16 4-bit condition regis-
ters. It also has 8 write ports, but only requires 11 read



Register File - 64 GPRs, 16 CRs
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Figure 4 - Basic processor design

4.2 Branching

Providing efficient branch behavior was of primary
importance in a hardware design of the DAISY architec-
ture. Each VLIW instruction explicitly indicates all branch

of four VLIWSs. The ability to branch every cycle without
any misprediction penalty provides exceptional perfor-
mance on control intensive code.

4.3 Pipeline

Like the rest of the design, the pipeline of the DAISY
processor was chosen for scheduling efficiency and achiev-
ing high ILP. It uses a three-stage pipeline for reducing
scheduling constraints and branch penalties, while depend-
ing upon the simpler hardware design of VLIW architec-
tures to achieving high frequencies. The three pipeline
stages of the DAISY processor drestruction Fetch Exe-
cute andWrite Back as shown in Figure 5. The stages have
been carefully designed so that each has approximately the
same delay.

The instruction fetchIF) stage begins by fetching the
block of four target VLIW instructions from the specified
address. A 4:1 multiplexer selects one of these VLIWSs. The
address,Next Line Addressin its header specifies the
instruction fetch address for the next cycle. The VLIW is
then latched at the end of the IF stage.

targets in its header, so the processor effectively branches

IF EX wB
every cycle. This design achieves perfect branch perfor- N ]
mance by splitting branch target selection into two phases. L P J Bl'f;]’?fh

The first step in branching is to fetch all possible branch S | VLIWL —l
targets, enabling late selection of the desired branch target. % VLIWg N : |__
Since fetching all possible branch targets from random @ |VLwg ] Qerant |Execute|>
locations in memory is too costly, the architecture requires |_.
the branch targets (up to 4) to be located consecutively in
memory. As a result, the first branch phase fetches from the Figure 5 - Pipeline Stages

instruction cache a single block of memory containing all

four possible branch targets. The address of this block, The executeEX) stage combines four major functions:
known as theNext Line Addresds contained in the previ-  pranch evaluation, register fetch, bypassing, and execution.
ous VLIW, as shown in Figure 5. The stage begins with operand fetch, which fetches the reg-
The second phase in branch evaluation is choosing thester and condition register values, performs full bypassing
appropriate VLIW from among the block of four VLIWS. of the 8 results from the previous VLIW, and selects
While a given VLIW instructionVLIW n is executing, its  petween immediate and register sources. The operands are
header is processed by the branch unit. The branch unithen sent to the branch and execute units. The branch unit
fetches up to three test conditions from the condition regis-eyaluates the VLIW tree header and determines the branch
ter file and evaluates the tree to determine the branch targehrget and taken path. Branch target selection indicates
and taken path. The branch target information selects theyhich of the four VLIWSs in the IF cache line is selected for
next VLIW for execution,VLIW n+1, from the block of  execution in the next cycle. Simultaneously, the execute
four VLIWSs. At the same time, the taken path information stage receives the operands and executes all 8 operations,
for VLIW nis fed to the execution unit which completes |atching the results at the end of the EX stage. During the
only those operations predicated upon the taken path.  rite back WB) stage, the results of those operations pred-
This two phase branching scheme provides perfecticated upon the taken path are committed and written back
branch performance assuming the two branch phases occyp the register files.
in the first two stages of the pipeline. The first phase of  pijpeline control is simple in the case of normal execution
branching, block VLIW fetch, must complete within the \yhere the pipeline simply advances one stage each cycle,
first stage to obtain the address for the next instruction fetchyyt requires special handling in the event of stalls or excep-
by the end of the cycle. The second phase of branching, tre¢ons. During stalls and exceptions, the state of the pipeline
VLIW header evaluation, must complete in the second myst remained fixed until the stall or exception is handled.
stage to select the appropriate branch target from the blockat high frequencies, because of the large wire delay



between units, it is not feasible to stop advancement of theThe first level data cache (D1 cache) is 32 KB. Two identi-

pipeline in the same cycle the stall or exception eventcal copies service the nearby ALU clusters. There are four
occurs. Instead, the processor core uses backup register identical copies of a 1K entry TLB, each with a single read

provide correct stall and exception handling. At the end of and write port. The instruction and data caches are con-
each normal cycle, the last pipeline state is stored intonected to an integrated 256 KB level 2 cache (L2 cache). A
backup registers. When a stall or exception occurs, the curthird level 16 MB cache (L3 cache), constructed using dis-
rent cycle completes, simultaneously writing an invalid crete off-chip SRAM devices, is attached to the L2 cache
state into the registers and the last valid state into thealong with an integrated 60X interface.

backup registers. On the next cycle the last valid state is

restored from the backup registers. In subsequent stall or L3 Cache (offchip) DU
exception cycles, this state remains fixed. When the stall or -
exception completes and normal execution resumes, pipe- §1024 ?1024 1024 |nt(?;-30réce
line execution continues from the last valid state. L2 Cache
4.4 Register File 1 §25 256§
The execute stage, which combines the register fetch and 1°%° 12 [itcache_o| | ||izcache 2 298
execute functions, is one of the critical paths in the DAISY 118 18y
processor. Since both of these functions are performed in a = <
single cycle, register file read times are critical to cycle g AUOL || ALUSS L S
time. To minimize register read time, rather than a single
register file with 16 read ports and 8 write ports, 8 identical | picache > Dicache
copies of the register file with 2 read ports and 8 write ports | ©°™° > copvt
per copy are used. Each execution unit fetches its operands
from its own local copy of the register file, but writes its o S| ] e
results to all 8 copies. This design trade-off minimizes the N -
critical register read time of the execute stage at the expense 4118 1184
of extra loading during register write back. However, write 11cache 1|l liicache 3
back time is not as critical because the whole WB cycle is _ _
dedicated to write back. $s6 2564

Although combining the register fetch and execute func-
tions into a single pipeline stage can be one of the limiting
factors in achieving the fastest cycle time, this path is also
balanced with other critical paths throughout the chip. 5.1 11 Cache
Other such paths include the SRAM access and logic and For the DAISY processor to achieve perfect multi-way
wire delay for the first level instruction and data caches.branching on every cycle, single-cycle execution of the
Also, the combined execute stage allows the register fetchinstruction fetch (IF) stage is critical. Wire delay is mini-
to occur in parallel with bypassing, effectively hiding the mized by partitioning the |1 cache into four sections, which
bypass delay. Full bypassing between all 8 issue slots isare each locally self-contained. Each partition services a

Figure 6 - Top level memory hierarchy

possible with only minimal impact on cycle time. single cluster of two ALUSs, so the partition needs to hold
] only those portions of the VLIW instruction pertinent to
5.0 Memory Hierarchy that ALU pair. This includes two operations and informa-

tion on the shape of the VLIW tree.
Fast cycle time is achieved during the instruction fetch
stage by replicating the branch unit at each cache partition.

. ! : . The VLIW tree header contained in each partition is used to
ported, single-cycle instruction and data caches. Figure 6 . .
erform address generation and branch target selection

shows the top level memory hierarchy. The processor cor : .
o . . o ocally for each cluster. Implementing branching locally
is divided into four clusters of ALU pairs, each containinga . . ~. ; o

. : . minimizes the wire delay for communicating the next
load/store unit, a first level data cache port, a first level,

: . . . instruction address to each cache partition.
instruction cache port and a translation lookaside buffer™ ™ _. . .
(TLB) port. Figure 7 shows the details of an I1 cache partition. The

The first level instruction cache (11 cache) is 64 KB, par- i1 cache IS d|re(?t mapped W.'th 512. rows and f°¥” banks.
. . . o . _Each line contains 4 VLIW instructions (1024 bits), one
titioned into four sections, each containing two operations

for the attached cluster, along with duplicated control bits. VLIW per pank, such t.hat all four po'55|blle branch targets
of the previous VLIW instruction reside in the same row

Architectures employing high instruction level parallel-
ism place a heavy burden on the memory hierarchy.
Achieving maximum performance requires large fast multi-



address (see section 4.2). The fetch address, Next Line The D1 cache is direct mapped and has 32 byte lines.
Address, is applied to each bank in each partition, readingThe implementation for multiple ports uses single-ported
from the SRAM single-ported array bank one of the four SRAM arrays organized into 8 banks. Data is interleaved
VLIW instructions. Simultaneously, the 11 cache write on a 32 byte line basis, with lines 0,8,16,... in bank 0, lines
buffers are examined for an address match. If a write buffer1,9,17,... in bank 1 and so on. All four requests can be satis-
hit occurs, multiplexers select the write buffer outputs over fied in a single cycle when there are no bank conflicts.
the SRAM data. The data are then applied to a 4:1 multi-When multiple requests are made to the same bank, the
plexer where a select signal from the branch unit selects th&/LIW stalls and the requests are prioritized by ALU num-
proper VLIW. On each access, the tag from the 11 directory ber in left-to-right order. Use of 8 banks allows for faster
is checked by a comparator and if a miss occurs, a stall sigarray access times and reduces stalls from bank conflicts.
nal is raised and an L2 request is made. When valid data Each read/write port maintains a separate copy of the D1
comes from the L2, it is directly bypassed to the ALU clus- cache directory. On an access, TLB and D1 directory
ters through multiplexers and simultaneously loaded intochecks are performed. If the TLB directory does not match
the write buffers, while the old contents of the write buffers the upper bits of the effective address, a TLB miss excep-

are written into the SRAM array. tion occurs. Otherwise, if the real address coming out of the
TLB matches the real address of the D1 directory, there is a
L2data D1 cache hit. A D1 cache miss is detected on the cycle after
| Bank the SRAM or write buffer access, and the D1 cache stalls
11_miss until valid data arrives from the L2 cache.
) ) The TLB is implemented as a direct mapped 1K entry
7 wb_hitor I1_miss . L.
% ouata array, which supports the usual PowerPC condition and
protection modes, and additional information to support
™| Bankl 11_miss binary translation.
| E——
W Port2 d ‘Pons_data
\ 7. wb_hit or 11_miss orte_fa@
W'BZ _I L2data — - Addr sel Pmm?dagor(lﬁdata
> BankZ / 11_miss ";‘33:‘1’83 g 4 [00_b0 [ wb1_oo [ woz_po [woz o0] N
T wh_addr(17:23; > SRAM
linefill_addr(17 23;1_»
wb_hit or 11_miss ddr0(27:30)
A L2data addr1(27:30)
A
F=| Bank3 ’_‘ 11_miss . * * o
0(24:28) __Ng1/ —\81 ata
- EA
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Figure 7 - 11 cache section
Figure 8 - D1 cache dataflow for read operation
5.2 D1 Cache and TLB

Careful attention was given to the design of the D1 cache
to support up to four memory operations per cycle. To

Each bank contains a 128x32 byte SRAM array, four
2x32 bit write buffers for stores and a 288 bit castout buffer.

effectively support such bandwidth, instead of a single D1 F19ure 8 shows a diagram of the read path of the D1 cache.
On a read, one of four addresses is selected by control logic

cache with 4 read ports and 4 write ports, two identical cop- ) > )
for row selection and comparison with the addresses of pre-

ies with 2 read ports and 4 write ports are used. As shown'". , ) :
in Figure 6, each copy services a pair of ALU clusters. VIOUS stores in the write buffers. The 32 byte line read from

Using two copies decreases the wire delay and number of€ SRAM is multiplexed down to two 32 bit words, one for
read ports, allowing for single-cycle loads, after address€aCh Port, while the data from the write buffers are simi-

computation has been performed in a previous cycle. Eacﬁa(;g' multiplexed to two h32 b'th wordg iccordmhg to t?e
copy still requires four store ports to maintain a consistent2ddress comparisons. The eight words for each port from

view of the memory. However, store time is not as critical the banks are then multiplexed by bank select multiplexers.
since write buffers hide the delay. The desired data are finally selected according to the valid



byte data. Writes into the bank as a result of a store are
. . . TLB 1/4 of 64KB 1/4 of 64KB TLB
done into the write buffers and marked valid after a TLB copy 0 | L1 Inst. Cache L1 Inst. Cache | |copy 2
and directory hit. The write buffers also contain rotate E . -
logic, which performs byte rotations according to the store , _ , ,
L. Reg FilgReg Fild |Reg FilgReg Filg
command. Path lengths are less critical for data stores,| 2 | |3g| |Lcopy0| copyl| | copy4| copy5| |sokg| | 2
. . - . . . . Q Q
since the data is first written into the write buffer andis not | § DLalta Aol AUl LAalu4]l AlUS DL;ta 8
H N N
dependent on SRAM access time. o;n' Cfggf 0T aoa] [aoel as ccaggye é
© 0 Reg FilgReg Fild [Reg FildReg Filg 1 ©
5.3 L2 Cache g copy 2| copy 3| | copy 6] copy 7 g
5 : : 5
The L2 cache is logically seen as a unified 256 KB | & [ eranchunit1 | | Branch Unita | 8
direct-mapped cache with 2 read ports and a single write TLB 1/4 of 64KB 1/4 of 64KB TLB
. . . copy 1 L1 Inst. Cache L1 Inst. Cache copy 3
port. One read port is dedicated for 128 byte wide 11 cache
reads, while the other is for 32 byte wide D1 cache read and | L3 Memory Interface | | 60X Bus Interface |

write accesses. Simultaneous I1 cache and D1 cache
requests to the L2 cache are serialized. The L2 cache is
implemented as a single one port, 2K row, 128 byte line
SRAM array. Address selection logic arbitrates between
access requests from the 11 and D1 interfaces. Data is readhesis into IBM’s 0.2fim SA-12 CMOS technology, with
into two, 2:1 multiplexers, one of which allows the L3 data effective gate length of 0.8, 2.5V supply voltage and 5
to be bypassed to the lower memory hierarchical levels,wiring levels. The SRAM arrays are created with an array
while the other is for castouts to the L3 cache. The 128 bytecompiler, and the ALU and register file are created using
output of the first 2:1 multiplexer is then either used by the bit-stacked standard-cell datapath circuits. Preliminary syn-
11 cache or further multiplexed down to a 32 byte subline thesis results show that the chip contains 486K complex
by the subline select logic for the D1 cache. logic gates and 478 KBytes of SRAM memory, within an
area of 300 mr Initial critical path simulations of synthe-
5.4 L3 Cache and 60X Interface sized macros result in an estimated cycle time of 350MHz
The L3 cache controller accepts a 128 byte request fromfor nominal performance parts. VHDL simulations of the
the L2 cache and serializes the data into 32 byte wide burstgrocessor were performed with the aid of an assembler pro-
sent to four 32 byte wide off-chip SRAM banks. L3 misses gram, created to allow significant programs to be written in
and castout requests are sent to a simplified 60X interfacéssembly and then translated to a binary memory image for
unit, where a request is made for a 60X bus burst transacdl’iVing the VHDL simulation. Architecture verification test
tion of four 8 byte accesses to main memory. This designprograms were coded at the assembly level and executed on
does not support cache snooping for multiprocessing, aghe VHDL model.
only a uni-processor implementation is currently being con-  System performance modeling was done using trace-
sidered. Multiprocessing support will be added in future based and execution-based simulators with the DAISY
implementations. binary translator for the PowerPC architecture to explore
various architectural trade-offs. The performance evalua-
6.0 Chip Floorplan

tions were done with these simulators using industry stan-
_ _ ) dard benchmarks. Results for page-based dynamic
Special attention was given to the layout of the processor,,nsiation have been previously reported in [9]. More
fqr achieving maximum spe_ed. Figure 9 showg a simplified aggressive trace-based optimizations show promising
diagram of the top level Ch'p f'oorp'a”- The f|gur_e ShO_WS results with higher levels of instruction level parallelism.
the placement of the multiple copies of the register files  15p16 1 summarizes the performance estimates for trace-
with relation to adjacent ALUs, the two D1 cache COpies, paqeq binary translation on the machine described in this
and the four |11 cache partitions. Multiple branch unit copies aper using SPECint95. The cycles per PowerPC instruc-
are also shown adjacent to each 11 cache partition. Carefuli;, tor each benchmark is broken down into components
attention was paid to unit placement and duplication of 4t infinite cache performance, I-cache miss penalty, D-
units for minimizing wire delay between units. Design .,che miss penalty, TLB miss penalty, and translation over-
decisions to duplicate units were also balanced with limits oo 4 The cache hierarchy is flushed when a new fragment
for total chip area and logical cache sizes. of code is translated, to reflect the adverse effect of transla-
tion events on the memory hierarchy. The actual translation
overhead is low because the SPECint95 benchmarks have
high code re-use rates. The degradation due to cache misses
is quite significant in the present design, which follows a

. Processor Core Memory Hierarchy

Figure 9 - DAISY Processor Floorplan

7.0 Results
The processor is implemented in VHDL for ASIC syn-



simple stall-on-miss policy. But the cache penalty is likely fect multi-way branching every cycle. An aggressive mem-
to be reduced in future versions of the design, when moreory hierarchy is necessary to supply the four simultaneous
on-chip cache is available, and latency hiding techniquesoad/store operations per VLIW. Numerous redundant cir-
are used. Table 2 summarizes the simulation parameters. cuits decrease loading and wire delay for high frequency
operation. A VHDL ASIC design was simulated and syn-
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